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Abstract
We investigate the periodic Coqblin–Schrieffer model in terms of functional
integral formalism, taking account of one- and two-loop corrections to the
mean-field solution. First, we take account of the one-loop (1L) diagrams to
determine the order parameter corresponding to the heavy-fermion state for the
symmetric case with isotropic hybridization. It is shown that the mean-field
order parameter is enhanced by the radial fluctuations, while it is reduced by the
phase fluctuations. Therefore, if the phase fluctuations are gauge-fixed by the
Anderson–Higgs mechanism, the heavy-fermion state is more stabilized due to
the corrections. Second, we give the analytical expressions for the two-loop
corrections to the free energy, which consist of the 1L corrections to the fermion
self-energy, the boson self-energy, and the fermion–boson vertex function.

In order to describe the heavy-fermion state, we have investigated the periodic Coqblin–
Schrieffer (PCS) model by applying the mean-field approximation (MFA) [1] and the one-
loop approximation (1LA) [2]. In [1] we have shown that the metamagnetic-like behaviour
of CeRu2Si2 and the non-Fermi-liquid-like behaviour of CeNi2Ge2 can be described with
the same origin of the singularity in the density of quasi-particle states as for the case with
anisotropic c–f hybridization. In the MFA, however, there appears a phase transition between
the heavy-fermion state and the localized state of f electrons, which has not been observed
experimentally. It is therefore of great interest to examine how the transition is modified by
corrections to the mean-field solution. For that purpose, we have developed a renormalized
perturbation theory employing the functional integral method, part of which has already been
reported in [2]. We have examined the self-consistent equation for the order parameter in the
1LA, and shown that, if phase fluctuations are gauge-fixed by the Anderson–Higgs mechanism
similarly to the superconductivity [2–4], the heavy-fermion state is more stabilized due to the
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corrections [2]. In this paper we give the one-loop (1L) contributions to the order parameter
from the radial and the phase fluctuations separately and present the analytical expressions for
the two-loop corrections to the free energy, which consist of the 1L corrections to the fermion
self-energy, the boson self-energy, and the fermion–boson vertex function.

We consider the PCS model:[1, 5]

Ĥ =
∑
�kσ

ε�k ĉ†
�kσ

ĉ�kσ +
∑
i M

(εf + EM) f̂ †
i M f̂i M − J

∑
i M M ′

f̂ †
i M ĉi M ĉ†

i M ′ f̂i M ′ , (1)

where ĉ†
�kσ

(ĉ�kσ ) and f̂ †
i M ( f̂i M ) are creation (annihilation) operators for a conduction electron

in the plane-wave state with wavevector �k and spin σ and an f electron in the state labelled by
M at site i , respectively. εf is the effective f-level energy, and EM is the Zeeman term given by
EM = −gJ µB〈M|Jz |M〉H due to the magnetic field H applied along the z-axis. We consider
only the lowest Kramers doublet, |M〉 and |M̄〉, and neglect the Zeeman term in the conduction
electron energy for simplicity. The Fourier transform ci M in the third term of equation (1) is
defined as ĉi M = (1/

√
N)

∑
�kσ v∗

�k Mσ
ei�k· �Ri ĉ�kσ , where v�kMσ are the normalized mixing matrix

elements in the periodic Anderson model, and N the number of f sites.
We calculate the partition function Z = Tr e−β(Ĥ−µN̂ ) on the basis of the functional

integral technique in which the Fermi operators in equation (1) are replaced by the Fermi fields
(c̄�kσ , etc). We introduce the auxiliary Bose fields (φ̄i and φi ) to decouple the scattering term
of equation (1) as

−J
∑
i M

(φ̄i c̄i M fi M + f̄i M ci Mφi ) + J
∑

i

|φi |2.

Then, we parametrize the Bose fields as

φi = σ0 + (ρi + iπi )/
√

2, (2)

where σ0 is the mean-field value, and ρi and πi are the radial and the phase components of the
fluctuations, respectively. The Fermi fields can be integrated out to give rise to the Helmholtz
free energy as

F = µNe + J Nσ 2
0 − kBT tr log Ĝ−1

0 + �F, (3)

�F = −kBT log〈etr log(1+Ĝ0 M̂f )〉. (4)

Here Ne is the total number of the electrons, and Ĝ0 is a mean-field Green function matrix.
Note that the quasiparticle Green function gξ (n) is given by gξ (n) = (iωn −(ωξ −µ))−1 whose
eigenenergy ωξ is given by

ωξ = 1
2

{
(ε�k + EM) + η

√
(ε�k − EM)2 + 4J 2σ 2

0 I�k M

}
, (5)

where ξ denotes (�k, M, η) with η = ±, and I�k M = ∑
σ |v�kMσ |2. M̂f is the fluctuation

(4×4) matrix without diagonal elements,whose off-diagonal ones are given by −Jv�k+�qMσ φ̄−�q ,
etc. The notation 〈· · ·〉 denotes the functional integrals over the Bose fields which should be
performed.

If we expand the factor 〈etr log(1+Ĝ0 M̂f )〉 in equation (4) in terms of Ĝ0 M̂f , we obtain the
perturbation expansion for the free energy. The one- and two-loop corrections to the free
energy are given as

�F (1) = 1
2 kBT 〈tr(Ĝ0 M̂f )

2〉, (6)

�F (2) = 1
4 kBT {〈tr(Ĝ0 M̂f )

4〉 − 1
2 〈{tr(Ĝ0 M̂f )

2}2〉}. (7)

The Feynman rules are shown in figure 1. The solid and wavy lines represent the fermion
and the boson {ρ, π}-propagators, respectively.
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Figure 1. Feynman rules for the propagators and the φ-fermion vertex: (a) the fermion propagator;
(b) the ρ- and π -propagators; and (c) the {ρ, π}-fermion vertex.

Figure 2. Order parameter σ 2
0 as a function of T for J/D = 1/6: the solid curve shows σ 2

0 for the
1L radial fluctuations, the dashed curve that for the MFA, and the dash–dotted curve that for the
1L phase fluctuations.

In the 1LA, the ρ- and the π-fluctuations contribute separately to the free energy; they are
given as

�F (1)
ρ,π (σ0) = N J [1 ∓ 1

4σ 2
0 K 2

M(σ 2
0 )], (8)

where − (+) is for the ρ-mode (π-mode), and KM (σ 2
0 ) = ∑

k,η zgap
kM (ωτ ) f (ωτ ) with zgap

kM (ωτ ) =
J (ωτ − EM)Ik/{(ωτ − EM)2 + J 2σ 2

0 Ik} and the Fermi distribution function f (ωτ ). We find
that K 2

M (σ 2
0 ) is an increasing function with respect to σ0. Therefore, if only the radial (ρ-)

fluctuations are effective, the self-consistent order parameter σ0 is expected to increase from
the mean-field solution. On the other hand, σ0 is expected to decrease for the phase (π-)
fluctuations alone, and it is not changed from the mean-field value with both of the fluctuations
being into account.

To perform a numerical calculation, we consider the isotropic hybridization (I�k = 1) and
half-filled (Ne = 2) case with a ratio of J to the conduction band half-width D of J/D = 1/6.
For this case, we obtain the temperature dependence of the square of the order parameter σ 2

0 ,
which is now proportional to the hybridization gap, as a function of temperature, as shown in
figure 2. The solid curve shows σ 2

0 for the 1L radial fluctuations, the dashed curve that for the
MFA, and the dash–dotted curve that for the 1L phase fluctuations. Note that the critical index
of σ 2

0 is 1 for all the cases. The ratio of the critical temperatures Tc of the 1L radial fluctuations

and the MFA is given by T (1L)
c /T (MF)

c = e−6(2
√

6−5) ∼ 1.83.
In the 2LA, the first term in the right-hand side of equation (7) is divided into �F (2)

FS and
�F (2)

VS , both of which come from the difference of the contraction with respect to that for the
bosons. The former consists of the 1L fermion self-energy and the latter the 1L {ρ, π}-fermion
vertex corrections, which are given as

�FFS = (1/4)kBT 〈tr(M̂k,k+q
f Ĝk+q

0 M̂k+q,k
f Ĝk

0 M̂k,k+q ′
f Ĝk+q ′

0 M̂k+q ′ ,k
f Ĝk

0)〉
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Figure 3. The two-loop diagrams for the free energy �F(2) dressed with: (a) the fermion self-
energy, �F(2)

FS ; (b) the fermion–boson vertex corrections, �F(2)
VC; (c) the boson self-energy �F(2)

BS .
(d) The general structure of the one- and two-loop diagrams, where �(r) , (p) and �(q) represent
the r-loop fermion self-energy, the p-loop fermion–boson vertex function, and the q-loop boson
self-energy, respectively.

and

�FVS = (1/4)kBT 〈tr(M̂k,k+q
f Ĝk+q

0 M̂k+q,k+q+q ′
f Ĝk+q+q ′

0 M̂k+q+q ′ ,k+q ′
f Ĝk+q ′

0 M̂k+q ′ ,k
f Ĝk

0)〉.
Here, Ĝk

0 and M̂k+q ′ ,k
f denote four-momentum (momentum and frequency) representations of

Ĝ0 and M̂f , respectively. The summations over k, q , and q ′ must be carried out. The second
term in the right-hand side of equation (7) is dressed with the 1L boson self-energy �F (2)

BS ,
whose diagram is shown as figure 3(c), and its representation is simply obtained. The one- and
two-loop diagrams are regarded as the lowest and the next-lowest ones of figure 3(d). Therefore,
it is suggested that the higher-order corrections have the general structure of figure 3(d).

In summary, we have found that in the 1LA the heavy-fermion state is stabilized by radial
fluctuations. This is the case if the phase fluctuations are gauge-fixed. One gauge-fixing
mechanism may be the Anderson–Higgs mechanism [3, 4], in which the real electromagnetic
fields absorb the Nambu–Goldstone mode, although the applicability of this mechanism close to
the critical temperature should be examined. We have also obtained the analytical expressions
for the two-loop corrections, and numerical calculations based on these are now in progress.
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